Freescale Semiconductor

50 kPa On-Chip Temperature Compensated and Calibrated Silicon Pressure Sensors

The MPXV2050 series devices are silicon piezoresistive pressure sensors that provide a highly accurate and linear voltage output directly proportional to the applied pressure. A single, monolithic silicon diaphragm with the strain gauge and an integrated thin-film resistor network. Precise span and offset calibration with temperature compensation are achieved by laser trimming.

Features
• Temperature Compensated Over 0°C to +85°C
• Ratiometric to Supply Voltage

Application Examples
• Pump/Motor Control
• Robotics
• Level Detectors
• Medical Diagnostics
• Pressure Switching
• Blood Pressure Measurement

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Package Options</th>
<th>Case No.</th>
<th># of Ports</th>
<th>Pressure Type</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPXV2050GP</td>
<td>Tray</td>
<td>1369</td>
<td>•</td>
<td>•</td>
<td>MPXV2050GP</td>
</tr>
</tbody>
</table>

SMALL OUTLINE PACKAGE

MPXV2050GP
CASE 1369
Pressure

Operating Characteristics

Table 1. Operating Characteristics \((V_S = 10 \text{ V}_{DC}, T_A = 25^\circ\text{C} \text{ unless otherwise noted, } P_1 > P_2)\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Range(^{(1)})</td>
<td>(P_{OP})</td>
<td>0</td>
<td>—</td>
<td>50</td>
<td>kPa</td>
</tr>
<tr>
<td>Supply Voltage(^{(2)})</td>
<td>(V_S)</td>
<td>—</td>
<td>10</td>
<td>16</td>
<td>(V_{DC})</td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_O)</td>
<td>—</td>
<td>6.0</td>
<td>—</td>
<td>mA(_{dc})</td>
</tr>
<tr>
<td>Full Scale Span(^{(3)})</td>
<td>(V_{FS})</td>
<td>38.5</td>
<td>40</td>
<td>41.5</td>
<td>mV</td>
</tr>
<tr>
<td>Offset(^{(4)})</td>
<td>—</td>
<td>—1.0</td>
<td>—</td>
<td>1.0</td>
<td>mV</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>(\Delta V/\Delta P)</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
<td>mV/kPa</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>—</td>
<td>—0.3</td>
<td>—</td>
<td>0.3</td>
<td>%(V_{FS})</td>
</tr>
<tr>
<td>Pressure Hysteresis (0 to 50 kPa)</td>
<td>—</td>
<td>—</td>
<td>±0.1</td>
<td>—</td>
<td>%(V_{FS})</td>
</tr>
<tr>
<td>Temperature Hysteresis (-40° to 125°C)</td>
<td>—</td>
<td>—</td>
<td>±0.5</td>
<td>—</td>
<td>%(V_{FS})</td>
</tr>
<tr>
<td>Temperature Coefficient of Full Scale</td>
<td>(T_{CV_{FS}})</td>
<td>—1.0</td>
<td>—</td>
<td>1.0</td>
<td>%(V_{FS})</td>
</tr>
<tr>
<td>Temperature Coefficient of Offset</td>
<td>(T_{CV_{OFF}})</td>
<td>—1.0</td>
<td>—</td>
<td>1.0</td>
<td>mV</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>(Z_{IN})</td>
<td>1000</td>
<td>—</td>
<td>2500</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>(Z_{OUT})</td>
<td>1400</td>
<td>—</td>
<td>3000</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Response Time(^{(5)}) (10% to 90%)</td>
<td>(t_R)</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Warm-Up Time</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Offset Stability(^{(6)})</td>
<td>—</td>
<td>—</td>
<td>±0.5</td>
<td>—</td>
<td>%(V_{FS})</td>
</tr>
</tbody>
</table>

1. 1.0 kPa (kiloPascal) equals 0.145 psi.
2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
3. Full Scale Span \((V_{FS})\) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
4. Offset \((V_{off})\) is defined as the output voltage at the minimum rated pressure.
5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
6. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Maximum Ratings

Table 2. Maximum Ratings\(^{(1)}\)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Max Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>Pressure ((P_1 > P_2))</td>
<td>200</td>
<td>kPa</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−40 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

![Block Diagram of Pressure Sensor Chip](image)

Figure 1. Temperature Compensated Pressure Sensor Schematic

Voltage Output vs. Applied Differential Pressure

The differential voltage output of the sensor is directly proportional to the differential pressure applied. The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side relative to the vacuum side. Similarly, output voltage increases as increasing vacuum is applied to the vacuum side relative to the pressure side.

On-Chip Temperature Compensation and Calibration

Figure 2 shows the minimum, maximum and typical output characteristics of the MPXV2050 series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

![Output vs. Pressure Differential](image)

Figure 2. Output vs. Pressure Differential

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.
LINEARITY

Linearity refers to how well a transducer's output follows the equation: \(V_{out} = V_{off} + \text{sensitivity} \times P \) over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 3) or (2) a least squares best line fit. While a least squares fit gives the “best case” linearity error (lower numerical value), the calculations required are burdensome. Conversely, an end point fit will give the “worst case” error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. The specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

Figure 3. Linearity Specification Comparison

Figure 4 illustrates the differential or gauge configuration in the basic chip carrier. A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXV2050 series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application. Refer to application note AN3728, for more information regarding media compatibility.

Figure 4. SOP Package — Cross-Sectional Diagram (Not to Scale)
PACKAGE DIMENSIONS

MECHANICAL OUTLINE

TITLE: 8 LD SOP, SIDE PORT

DOCUMENT NO: 98ASA99303D
CASE NUMBER: 1369-01
STANDARD: NON-JEDEC

REV: B
24 MAY 2005

CASE 1369-01
ISSUE B
SOP PACKAGE

PAGE 1 OF 2
NOTES:
1. CONTROLLING DIMENSION: INCH

\[\text{DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.}
\text{MOLD FLASH AND PROTRUSIONS SHALL NOT EXCEED .006 (0.152) PER SIDE.} \]

\[\text{DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR}
\text{PROTRUSION SHALL BE .006 (0.203) MAXIMUM.} \]

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
<th>MILL</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.300</td>
<td>.330</td>
<td>7.11</td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>.002</td>
<td>.010</td>
<td>0.05</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>.038</td>
<td>.042</td>
<td>0.96</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>.465</td>
<td>.485</td>
<td>11.81</td>
<td>12.32</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>.717</td>
<td></td>
<td>18.21</td>
<td></td>
<td>BSC</td>
</tr>
<tr>
<td>E1</td>
<td>.465</td>
<td>.485</td>
<td>11.81</td>
<td>12.32</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>.100</td>
<td></td>
<td>2.54</td>
<td></td>
<td>BSC</td>
</tr>
<tr>
<td>F</td>
<td>.245</td>
<td>.255</td>
<td>6.22</td>
<td>6.47</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.120</td>
<td>.130</td>
<td>3.05</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>.051</td>
<td>.071</td>
<td>1.55</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>.270</td>
<td>.290</td>
<td>6.86</td>
<td>7.36</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>.080</td>
<td>.090</td>
<td>2.03</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>.009</td>
<td>.011</td>
<td>0.23</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>.115</td>
<td>.125</td>
<td>2.92</td>
<td>3.17</td>
<td></td>
</tr>
</tbody>
</table>

CASE 1369A-01
ISSUE B
SOP PACKAGE
How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc. Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2010. All rights reserved.